IEEE Nanotechnology Materials and Devices Conference (NMDC)
IEEE
  • NMDC Proceedings Portal


      Dec. 12-15, Vancouver, BC


  • Announcements


  • Categories


  • Archives

Archive for the ‘invited21’ Category

Deji Akinwande

Sunday, October 25th, 2020

Adventures with Atomic Materials: from Flexible/Wearable Electronics to Memory Devices

Deji Akinwande, University of Texas – Austin

Abstract:

This talk will present our latest research adventures on 2D nanomaterials towards greater scientific understanding and advanced engineering applications. In particular, the talk will highlight our work on flexible electronics, zero-power devices, monolayer memory (atomristors), non-volatile RF switches, and wearable tattoo sensors. Non-volatile memory devices based on 2D materials are an application of defects and is a rapidly advancing field with rich physics that can be attributed to sulfur vacancies or metal diffusion. Atomistic modeling and atomic resolution imaging are contemporary tools under use to elucidate the memory phenomena. Likewise, from a practical point, electronic tattoos based on graphene have ushered a new material platform that has highly desirable practical attributes including optical transparency, mechanical imperceptibility, and is the thinnest conductive electrode sensor that can be integrated on skin for physiological measurements. Much of these research achievements have been published in nature, advanced materials, IEEE and ACS journals.

Bio:

Deji Akinwande is an Endowed Full Professor at the University of Texas at Austin. He received the PhD degree from Stanford University in 2009. His research focuses on 2D materials and nanoelectronics/technology, pioneering device innovations from lab towards applications. Prof. Akinwande has been honored with the 2019 Fulbright Specialist Award, 2017 Bessel-Humboldt Research Award, the U.S Presidential PECASE award, the inaugural Gordon Moore Inventor Fellow award, the inaugural IEEE Nano Geim and Novoselov Graphene Prize, the IEEE “Early Career Award” in Nanotechnology, the NSF CAREER award, several DoD Young Investigator awards, and was a past recipient of fellowships from the Kilby/TI, Ford Foundation, Alfred P. Sloan Foundation, 3M, and Stanford DARE Initiative. His research achievements have been featured by Nature news, Time magazine, BBC, Discover magazine, and many media outlets. He serves as an Editor for the IEEE Electron Device Letters and Nature NPJ 2D Materials and Applications. He Chairs the 2020 Gordon Research Conference on 2D materials, and was the past chair of the 2019 Device Research Conference (DRC), and the 2018 Nano-device committee of IEEE IEDM Conference. He is a Fellow of the IEEE and the American Physical Society (APS).

 

David Gracias

Sunday, October 25th, 2020

3D Nanofabrication by curving, bending, and folding

David Gracias, Professor, Department of Chemical and Biomolecular Engineering, Johns Hopkins University

Abstract:

Conventional VLSI lithographic patterning approaches have revolutionized modern engineering, but they are inherently planar. Recently, researchers have discovered that the interplay between out-of-plane stresses, capillary forces or swelling vs bending rigidity of patterned thin films can be engineered so as to cause spontaneous 2D to 3D shape transformations by curving, bending, and folding in a reproducible and high-throughput manner.

In this talk, the design, assembly, and characterization of such 3D nanostructured materials and devices will be described. The emphasis of our approach has been on enabling mass-production of lithographically micro, nano, and smart 3D devices in a high-throughput manner with diverse materials such as 2D layered materials (e.g. graphene, MoS2), silicon and related materials, polymers (e.g. SU8) and hydrogels. By leveraging the precision of planar lithography approaches such as photo, e-beam, and nanoimprint methodologies, a range of functional patterns can be incorporated into these thin film self-assembling systems so as to provide enhanced functionality for optics, electronics, and medicine. Assembled devices include metamaterials, flexible biosensors, curved microfluidics, drug-delivery capsules, anatomically realistic models for tissue engineering, antennas, e-blocks, sensors, soft-robotic actuators, and untethered surgical tools.

Biography:

David Gracias is a Professor at the Johns Hopkins University (JHU) in Baltimore. He did his undergraduate at the Indian Institute of Technology, received his PhD from UC Berkeley, did post-doctoral research at Harvard University and worked at Intel Corporation prior to starting his independent laboratory at JHU in 2003. Prof. Gracias has pioneered the development of 3D, integrated micro and nanodevices using a variety of patterning, self-folding and self-assembly approaches.  He has co-authored over 190 technical articles, holds 33 issued patents and has delivered over 100 invited technical talks. Prof. Gracias has received a number of major awards including the NIH Director’s New Innovator Award, Beckman Young Investigator Award, NSF Career Award, Camille Dreyfus Teacher Scholar Award, Beckman Young Investigator Award, and Friedrich Wilhelm Bessel Award. He is a Fellow of the American Institute for Medical and Biological Engineering (AIMBE), Royal Society of Chemistry (RSc), American Association for the Advancement of Science (AAAS) and the Institute of Electrical and Electronics Engineers (IEEE).

 

Paul S. Weiss

Sunday, October 25th, 2020

Atomically Precise Chemical, Physical, Electronic, and Spin Contacts and Interfaces

Paul S. Weiss, California NanoSystems Institute and Departments of Chemistry & Biochemistry, Bioengineering, and Materials Science & Engineering, UCLA

Abstract:

Two seemingly conflicting trends in nanoscience and nanotechnology are our increasing ability to reach the limits of atomically precise structures and our growing understanding of the importance of heterogeneity in the structure and function of molecules and nanoscale assemblies. By having developed the “eyes” to see, to record spectra, and to measure function at the nanoscale, we have been able to fabricate structures with precision as well as to understand the important and intrinsic heterogeneity of function found in these assemblies. The physical, electronic, mechanical, and chemical connections that materials make to one another and to the outside world are critical. Just as the properties and applications of conventional semiconductor devices depend on these contacts, so do nanomaterials, many nanoscale measurements, and devices of the future. We discuss the important roles that these contacts can play in preserving key transport and other properties. Initial nanoscale connections and measurements guide the path to future opportunities and challenges ahead. Band alignment and minimally disruptive connections are both targets and can be characterized in both experiment and theory. Chiral assemblies can control the spin properties and thus transport at interfaces. I discuss our initial forays into these areas in a number of materials systems.

Biography:

Paul S. Weiss graduated from MIT with S.B. and S.M. degrees in chemistry in 1980 and from the University of California at Berkeley with a Ph.D. in chemistry in 1986. He is a nanoscientist and holds a UC Presidential Chair and a distinguished professor of chemistry & biochemistry, bioengineering, and materials science & engineering at UCLA, where he was previously director of the California NanoSystems Institute. He also currently holds visiting appointments at Harvard’s Wyss Institute and several universities in Australia, China, and South Korea. He studies the ultimate limits of miniaturization, developing and applying new tools and methods for atomic-resolution and spectroscopic imaging and patterning of chemical functionality. He and his group apply these advances in other areas including neuroscience, microbiome studies, tissue engineering, and high-throughput gene editing. He led, coauthored, and published the technology roadmaps for the BRAIN Initiative and the U.S. Microbiome Initiative. He has won a number of awards in science, engineering, teaching, publishing, and communications. He is a fellow of the American Academy of Arts and Sciences, American Association for the Advancement of Science, American Chemical Society, American Institute for Medical and Biological Engineering, American Physical Society, American Vacuum Society, Canadian Academy of Engineering, IEEE, Materials Research Society, and an honorary fellow of the Chinese Chemical Society and Chemical Research Society of India. He is the founding and current editor-in-chief of ACS Nano.